Kalman Filter OpenCV Python Example

ViaByte.Net

measurement_noise = 10.0
process_noise = 0.1

We can now initialize the Kalman filter using these parameters:

kalman = cv2.KalmanFilter(4, 2)
kalman.transitionMatrix = F
kalman.measurementMatrix = H
kalman.processNoiseCov = np.eye(4, dtype=np.float32)*process_noise
kalman.measurementNoiseCov = np.eye(2, dtype=np.float32)*measurement_noise
kalman.errorCovPost = np.eye(4, dtype=np.float32)
kalman.statePost = state

Step 2: Update the Kalman Filter

The next step is to update the Kalman filter using the new observation. We will simulate the observation by adding some noise to the true position of the object:

observation = true_position + np.random.randn(2)*measurement_noise

We can now update the Kalman filter using this observation:

Bagikan:

Tinggalkan komentar